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Abstract: By studying perturbations about the vacuum, we show that Hořava gravity

suffers from two different strong coupling problems, extending all the way into the deep

infra-red. The first of these is associated with the principle of detailed balance and explains

why solutions to General Relativity are typically not recovered in models that preserve

this structure. The second of these occurs even without detailed balance and is associated

with the breaking of diffeomorphism invariance, required for anisotropic scaling in the

UV. Since there is a reduced symmetry group there are additional degrees of freedom,

which need not decouple in the infra-red. Indeed, we use the Stuckelberg trick to show

that one of these extra modes become strongly coupled as the parameters approach their

desired infra-red fixed point. Whilst we can evade the first strong coupling problem by

breaking detailed balance, we cannot avoid the second, whatever the form of the potential.

Therefore the original Hořava model, and its ”phenomenologically viable” extensions do

not have a perturbative General Relativity limit at any scale. Experiments which confirm

the perturbative gravitational wave prediction of General Relativity, such as the cumulative

shift of the periastron time of binary pulsars, will presumably rule out the theory.
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1 Introduction

Hořava has recently proposed an interesting toy model of quantum gravity [1–3], generat-

ing a whole slew of publications that examine various aspects of the theory (see, for exam-

ple [4–9]). At short distances the theory describes interacting nonrelativistic gravitons, and

is argued to be power counting renormalisable in 3 + 1 dimensions. Relativistic physics is

supposed to emerge in the infra-red via relevant deformations, such that General Relativity

is recovered at large distances. Since Lorentz symmetry is manifestly broken in this theory,

there are, in general, a huge number of possible relevant deformations one could include.

To restrict the number of possible parameters in the model, Hořava made use of the prin-

ciple of ”detailed balance”, as developed in studies of non-equilibrium critical phenomena

and quantum critical systems. Whilst this organising principle is elegant, it would appear

to be an obstacle to recovering GR in the infra-red. This was first illustrated in a study of

static spherically symmetric solutions that did not recover the Schwarzschild geometry at

large distances, unless detailed balance was broken [7, 8]. This has led to so called ”phe-

nomenologically viable” extensions of the model that break detailed balance explicitly [9].

In this paper we will show that Hořava gravity suffers from strong coupling problems,

with and without detailed balance, and is therefore unable to reproduce General Relativ-

ity in the infra-red. We consider the perturbative theory about the vacuum, yielding two

important results. The first considers the role of detailed balance in these models. As the

breaking terms go zero, we find that the linearised gravitational Hamiltonian constraint

vanishes off -shell. This means that linearised theory breaks down in this limit, just as it

does for the Chern-Simons limit of Gauss-Bonnet gravity [10] (for a review on these gravity

theories see [11, 12]). By comparing our equations to their counterparts in General Relativ-

ity, we can see that the ”emergent” Planck length actually diverges in the limit of detailed

balance, in contrast to the original claims [2]. This strong coupling behaviour means that

the theory with detailed balance does not have a perturbative infra-red limit of any sort,

explaining the results of [7]. Indeed, from the point of view of spherically symmetric so-

lutions one sees that the putative higher order terms in the IR are just as important as
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the ”lower” order terms. In summary, with detailed balance, we can never hope to recover

GR in the infra-red for the following reason: General Relativity admits an effective lin-

earised description beyond the Schwarzschild radius of a source, but in Hořava gravity with

detailed balance, strong coupling prevents an effective linearised description on any scale.

Our second result also applies to those models that have been dubbed ”phenomenolog-

ically viable”, and break detailed balance explicitly. In some sense it is clear that breaking

detailed balance cannot possibly be enough to recover GR in these models. The point is

that General Relativity contains full diffeomorphism invariance, so that the theory has just

two propagating degrees of freedom. Because Lorentz symmetry is necessarily broken in

the UV, Hořava gravity contains a reduced set of diffeomorphisms, and must therefore con-

tain more propagating degrees of freedom. If GR is to be recovered in the infra-red, these

extra degrees of freedom should decouple from the system. This is not what happens. By

restoring the full set of diffeomorphisms using the Stuckelberg trick, we are able to show

that one of the additional degrees of freedom actually becomes strongly coupled as the

parameters in the theory flow towards their desired infra-red fixed points. The scenario

is highly reminiscent of Pauli-Fierz massive gravity [13] in which the longitudinal scalar

becomes strongly coupled as m → 0 [14], leading to the famous vDVZ discontinuity [15].

This result is independent of how one chooses to break detailed balance.

2 Anisotropic scaling and Hořava gravity

We begin by reviewing the basic ideas behind Hořava gravity in scalar field theory, using

Lifshitz’s model for a scalar field that explicitly breaks Lorentz invariance [16] (see also [17,

18]). This provides a different way to regulate the UV divergences of loop diagrams,

avoiding violations of unitarity associated with Pauli-Villars and higher derivative Lorentz

invariant regulators, and without the need to introduce ficticious non-integer dimensions as

in dimensional regularisation. The hope then is that while Lorentz symmetry is explicity

broken at high energy scales, it may be recovered in the IR regime at low energies. Consider,

for example, the action [18]

Sfree =

∫

dt dDx

[

1

2
φ̇2 − 1

2
φ(−∇2)zφ)

]

, (2.1)

This describes a free field fixed point with anisotropic scaling between space and time,

xi → lxi, t→ lzt, (2.2)

characterised by the ’dynamical critical exponent’ z, so that the scaling dimensions are

[x] = −1 and [t] = −z. The action (2.1) leads to internal propagators in the UV of the form

G(ω, k) → |k|−2z. (2.3)

For large enough z one sees that the fall-off of the propagator is fast enough to render

Feynman diagrams convergent. In fact, the superficial degree of divergence, δ, satisfies

δ ≤ (D − z)L, (2.4)
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for L loops [18]. As it stands, this model is not acceptable because it has no Lorentz

symmetry in the IR. This may be remedied by including a relevant operator of the form

Srel =

∫

dt dDx

[

−1

2
c2(φ)∂

iφ∂iφ

]

, (2.5)

leading to a model that flows to a theory with Lorentz symmetry emergent at low energies,

with a light-cone defined by the parameter c(φ). It is interesting to note that if we have

a number of matter fields, they can each have their own Lorentz symmetry. This is not

something that is observed experimentally and leads to a fine tuning of the model. There

are further issues that appear once Lorentz symmetry is broken, such as the possibility of a

black-hole perpetuum mobile machine [19, 20]. Furthermore, although the action Sfree+Srel

breaks Lorentz invariance in the UV, it does not introduce extra degrees of freedom in the

infra-red as the emergent symmetry is not dynamical. In General Relativity, however, dif-

feomorphism invariance is a dynamical symmetry, so breaking it in the UV could alter the

number of degrees of freedom that propagate in the infra-red. This leads directly to the

second strong coupling problem alluded to earlier.

With Lorentz symmetry no longer being used as a guiding principle, there is a great pro-

liferation in the number of terms that may appear in the action. To ameliorate this, Hořava

proposed an organising principle based on detailed balance [2], which also allows one to put

forward a quantum inheritance principle such that the theory in D+1 dimensions acquires

the renormalisation properties of theD-dimensional theory [21]. Detailed balance is a state-

ment that the potential of aD+1-dimensional theory is obtained from aD-dimensional ”su-

perpotential” by functional differentiation. For example, the scalar field action is given by

S =

∫

dt dDx

[

1

2
φ̇2 − 1

2

(

δW

δφ

)2
]

, (2.6)

with a superpotential

W [φ] =

∫

dDx

[

1

2
∂iφ∂

iφ+
1

2
mφ2

]

. (2.7)

In this case, one obtains a z = 2 theory in the UV, with a Lorentz invariant Klein Gordon

theory in the IR, with an ”emergent” speed of light c2(φ) = 2m. In the first of our results,

we shall find that the gravity model constructed using detailed balance does not have a

well defined perturbation limit about its vacuum. However, we ought to note that this is

not an artefact of detailed balance in general. For example, the scalar model above has

well defined wave solutions in the vacuum

φ(t, x) = ei(ωt+k.x), ω = ±(|k|2 +m). (2.8)

Since the theory is linear, the perturbations are also waves. The situation in gravity is

rather more subtle owing to the fact that there are constraints, specifically the Hamilto-

nian constraint, as we shall see in the next section. The constraint equations lead to strong

coupling unless detailed balance is broken.

The gravitational theory based on the violation of Lorentz symmetry has been clearly

presented in Hořava’s paper [2] and we refer the reader to that work for more detail. One of
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Hořava’s key assumptions is the explicit breaking of full four dimensional diffeomorphism

invariance to a subgroup that preserves a foliation structure of space-like slices. This

enables him to make use of anisotropic scaling in the UV as in the Lifshitz model we have

just discussed. Following from the ADM decomposition of the metric, and the Einstein

equations [22], the fundamental objects of interest are the fields N(t, x), Ni(t, x), gij(t, x),

corresponding to the lapse, shift and spatial metric of the ADM decomposition,

ds2 = ĝµνdx
µdxν = −N2c2dt2 + gij(dx

i +N idt)(dxj +N jdt). (2.9)

Under the new, restricted, set of diffeomorphisms

xi → xi − ζi(t, x), t→ t− f(t) (2.10)

the fields transform as follows

δgij → δgij + 2∇(iζj) + f ġij , (2.11)

δNi → δNi + ∂i(ζ
jNj) − 2ζj∇[iNj] + ζ̇jgij + ḟNi + fṄi, (2.12)

δN → δN + ζj∂jN + ḟN + fṄ. (2.13)

where indices are raised/lowered using gij , and ∇i is the covariant derivative on the space-

like slices.

The transformation laws represent an important deviation from standard General Rel-

ativity, where full 4D diffeomorphism invariance is present. Indeed, note that the last of

these transformations shows that if N is restricted to be ”projectable” [2], i.e. N = N(t),

then this condition is maintained under the restricted diffeomorphism group. Projectable

solutions to Hořava’s theory cannot, therefore, be transformed into non-projectable solu-

tions, in contrast to General Relativity. This explicitly illustrates the fact that solutions to

Hořava gravity cannot be specified using the 4D metric alone–one must always specify the

foliation. Furthermore, although one is free to impose projectability at the level of solutions

in Hořava gravity, doing so prevents us from finding the full set of solutions. Again, this is

not the case in GR where one can always use the full set of diffeomorphisms to render any

solution locally projectable.

In this paper, we shall consider the general case, as Hořava does, where N is a function

of both xi and t. We note that imposing projectability at the level of theory, as advocated

in [9], alters the theory explicitly, since the equations of motion for the lapse can only then

be expressed as integrals over space. Such a modification of Hořava gravity would appear

to be inherently non-local, so we will not consider it here.

The action for Hořava gravity is made up of a kinetic term, and a potential term

satisfying ”detailed balance”,

SH =

∫

dtd3x
√
gN(T − V ). (2.14)

The kinetic term is constructed out of the extrinsic curvature of the foliations, as this is

covariant under the remnant diffeomorphism symmetry,

Kij =
1

2N
(ġij −∇iNj −∇jNi). (2.15)
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Requiring the kinetic term to be at most quadratic in K yields

T =
2

κ2
(KijK

ij − λK2) =
2

κ2
KijG

ijklKkl (2.16)

where we have introduced the the de Witt metric,

Gijkl =
1

2
(gikgjl + gilgjk) − λgijgkl, (2.17)

whose inverse is given by

Gijkl =
1

2
(gikgjl + gilgjk) − λ̃gijgkl, λ̃ =

λ

3λ− 1
. (2.18)

The dimensionless parameter λ is taken to run with scale. In order to have any hope

of recovering General Relativity in the IR, one must assume that λ = 1 corresponds to

the infra-red fixed point. The potential term is constructed out of the spatial metric and

its derivatives. Inspired by methods used in quantum critical systems and non-equilibrium

critical phenomena, Hořava restricts the large class of possible potentials using the principle

of detailed balance outlined above. This requires that the potential takes the form

V =
κ2

8

1√
g

δW

δgij
Gijkl

1√
g

δW

δgkl
(2.19)

=
κ2

8
EijGijklE

kl. (2.20)

Note that by constructing Eij as a functional derivative it automatically becomes transverse

from within the foliation slices, ∇iE
ij = 0. We can derive the field equations by varying

the action (2.14) with respect to each of the fields [4],

1√
g

δSH

δN
= −(T + V ), (2.21)

1√
g

δSH

δNi
=

4

κ2
∇iπ

ij, (2.22)

1√
g

δSH

δgij
= − 2

κ2

[

π̇ij +NKπij + 2∇k(π
k(iN j)) −Nk∇kπij + 2NKkiπj

k

]

+
1

2
N(T − V )gij

−κ
2

4

[

∆(Nχij) +NEi
kχ

jk
]

, (2.23)

where

πij = Kij − λKgij , χij = Eij − λ̃Egij , (2.24)

and the operator ∆ is defined as1

∆hij = lim
ǫ→0

1

ǫ

(

Eij [g + ǫh] − Eij [g]
)

. (2.25)

1To illustrate what we mean by this definition, note that we can define the Lichnerowicz operator in a

similar way, − 1

2
∆Lhij = limǫ→0

1

ǫ
(Rij [g + ǫh] − Rij [g]).
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Having constructed the gravitational theory following the same principles as those for the

scalar field, it remains to pick the superpotential W [gij ]. In 3+1 dimensions, this must be

chosen such that we have anisotropic scaling with a dynamical critical exponent z ≥ 3, in

order that the theory be power counting renormalisable. This follows from the fact that in

D+1-dimensions, the scaling dimension of κ is given by

[κ] =
z −D

2
. (2.26)

Fully relativistic theories such as general relativity must always have z = 1. In the next

section we will focus on the case of z = 3, so that κ is dimensionless in 3 + 1 dimensions.

3 z=3 Hořava gravity with and without detailed balance

Given the guiding principle of detailed balance, the unique z = 3 theory in 3 + 1 dimen-

sions, with additional relevant deformations in the IR may be obtained from the following

superpotential [2],

W [gij ] =
1

w2

∫

ω3(Γ) + µ

∫

d3x
√
g(R − 2ΛW ). (3.1)

The z = 3 contribution comes from gravitational Chern-Simons action in 3-dimensions,

where

ω3(Γ) = Tr

(

Γ ∧ dΓ +
2

3
Γ ∧ Γ ∧ Γ

)

. (3.2)

Again, all the couplings are taken to run with scale, with scaling dimensions [w] = 0, [µ] =

1, [ΛW ] = 2. Variation of this action yields

Eij =
1

w2
Cij − µ

2

(

Gij + ΛW gij
)

, (3.3)

where Gij is the Einstein tensor on the spatial slices, and Cij is the Cotton tensor

Cij = ǫkl(i∇kR
j)
l . (3.4)

Hořava originally argued that this theory flowed from λ = 1/3 in the UV, to λ = 1 in the

IR, thereby recovering General Relativity at low energies, with an emergent speed of light,

c, Newton’s constant, GN , and cosmological constant, Λ, given by

c =
κ2µ

4

√

ΛW

1 − 3λ
, GN =

κ2

32πc
, Λ =

3

2
ΛW . (3.5)

However, a study of spherically symmetric solutions in this theory [7] seems to indicate

that this is not the case. One has to break detailed balance in order to recover the corre-

sponding solutions in General Relativity. We will now show that this is because detailed

balance leads to strong coupling on all scales, so that one cannot consistently truncate the

higher derivative operators in the infra-red. To elucidate the specific role played by detailed

balance let us break it explicitly. Clearly there are a number of ways in which one can do

– 6 –
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this. A set of relevant breaking terms was proposed in [9], although we note here that their

list did not include terms like
∫

dtd3x
√
gNCijRij, which seem perfectly reasonable at first

glance. For simplicity, we will perform a minimal breaking of detailed balance by adding

a term to the action of the form

Sbr = −κ
2

8

(

ǫ

1 − 3λ

)
∫

dtd3x
√
gN(R− 3β) (3.6)

where, from the point of view of the z = 3 theory at short distances, the new parameters

have scaling dimension [ǫ] = 4, [β] = 2. We will also include a generic matter contribution,

Sm, so that the full action is now given by

S = SH + Sbr + Sm. (3.7)

Of course, it is not exactly clear how we should couple matter in this theory, as we no longer

have the guiding hand of Lorentz invariance to assist us. We will not worry about those

issues here, merely assuming that it can be done in some consistent way, so that the matter

fields act as sources in our equations of motion. The field equations now take the form

1√
g

δSH

δN
− κ2

8

(

ǫ

1 − 3λ

)

(R− 3β) = − 1√
g

δSm

δN
= ρ, (3.8)

1√
g

δSH

δNi
= − 1√

g

δSm

δNi
= vi, (3.9)

1√
g

δSH

δgij
− κ2

8

(

ǫ

1 − 3λ

)[

∇i∇j − (gij∇2 +Gij +
3β

2
gij)

]

N = − 1√
g

δSm

δgij
= τ ij . (3.10)

The energy-momentum fields of the matter contribution (ρ, vi, τ ij) satisfy the following

conservation laws

∫

d3x
√
g

[

ġijτ
ij −N

(ρ
√
g)̇

√
g

−Ni
(vi√g)̇
√
g

]

= 0, (3.11)

2∇iτij − ρ∂jN +
(vi√g)̇
√
g

+Nj∇iv
i + 2vi∇[iNj] = 0. (3.12)

These deviate slightly from the usual conservation of energy-momentum, ∇̂µT
µν = 0, be-

cause we only have the reduced set of diffeomorphisms outlined in the previous section.

We now wish to define vacua2 in this theory, in the absence of these matter fields.

Owing to the fact that we have a reduced set of diffeomorphisms, it is not enough to

impose, say, maximal symmetry in 3+1 dimensions. We must also define the foliation. To

this end we note that the momentum conjugate to gij is given by pij =
√
gπij , and require

it to vanish on the vacuum, so that K̄ij = 0. Further, we choose the gauge N̄i = 0, and

require that the spatial metric, ḡij is a homogeneous Einstein space

ḡijdx
idxj =

dr2

1 − γ
2 r

2
+ r2dΩ2 (3.13)

2We will denote vacuum expectation values for all fields with a “bar”.
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with constant Ricci curvature R̄ij = γgij . In geometric terms we are asking for our 3 dimen-

sional foliation to be maximally symmetric and furthermore that the foliation be trivially

embedded (totally geodesic). Given that 3-space is conformally flat, Ēij = qḡij where

q = µ
4 (γ − 2ΛW ). The Ni equation (3.9) is satisfied automatically. The N equation (3.8),

which is essentially the Hamiltonian constraint, yields q2 = ǫ(β − γ), and so

γ = 2ΛW − 8

µ2

(

ǫ±
√

ǫ2 +
ǫµ2

4
(β − 2ΛW )

)

. (3.14)

It remains to impose the gij equation (3.10), which constrains the background lapse function

N̄ . The quantity ∆Nḡij is easily derived by making use of the transformation laws for Gij

and Cij under conformal transformations. We find that

− κ2

16

(

µq + 2ǫ

1 − 3λ

)

[

∇i∇j − gij(∇2 + γ)
]

N̄ = 0. (3.15)

For detailed balance, we have ǫ = q = 0, and so N̄ is unconstrained. This is consistent

with the findings of [7]. Away from detailed balance, we find that N̄ =
√

1 − γr2/2, so

that the full 3 + 1 dimensional metric corresponds to a maximally symmetric spacetime

with curvature γ/2, written in global coordinates.

Let us now reintroduce the matter fields, and consider perturbations about the vacuum

δN = n(t, x), δNi = ni(t, x), δgij = hij(t, x). (3.16)

It is convenient to introduce E ij = Eij − qgij , as this vanishes on the background. The

unbroken potential now takes the form

V =
κ2

8

[

E ijGijklEkl + 2q(1 − 3λ̃)E + 3q2(1 − 3λ̃)
]

, (3.17)

and the Hamiltonian constraint (3.8) may be written

− 2

κ2
KijG

ijklKkl −
κ2

8

[

E ijGijklEkl +
1

2

(

1

1 − 3λ

)

(µq + 2ǫ)(R − 3γ)

]

= ρ (3.18)

where we have used the fact that q2 = ǫ(β − γ) and E = µ
4 (R − 3γ). Perturbing this

equation to linear order is now easy, since the first two terms are already second order

owing to the fact that both Kij and E ij vanish on the background. Lumping all higher

order corrections alongside the matter field, the Hamiltonian constraint gives

− κ2

16

(

µq + 2ǫ

1 − 3λ

)

δR = ρ+ non-linear corrections. (3.19)

For detailed balance (ǫ = q = 0), we immediately see that linearised perturbation theory is

not well defined in the presence of matter. Higher order terms always dominate, and one

loses predictive power. This is characteristic of strong coupling, and is reminiscent of the

Chern-Simons limit in Gauss Bonnet gravity [10]. Perturbation theory around the vacuum

is strongly coupled on all scales, even in the deep infra-red. We have included a matter
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component to render this explicit, although it ought to be clear that vacuum fluctuations

will also be strongly coupled since generically one does not expect all non-linear corrections

to vanish identically. Of course, one might hope to alleviate this strong coupling problem

by perturbing about a different background. However, on temporal/spatial scales that are

small compared to the scale set by the background extrinsic curvature/spatial curvature,

our vacuum solution would represent a good approximation for the background, and one

would immediately lose predictability. For example, cosmological perturbations about an

FRW background would become strongly coupled on subhorizon scales.

Of course, one can avoid this problem by moving away from detailed balance. Indeed,

it is instructive to compare equation (3.19) with the corresponding equation in General Rel-

ativity

− c

16πGN
δR = ρ+ non-linear corrections. (3.20)

This suggests that if General Relativity is indeed recovered in the infra-red, it does so with

an emergent Newton constant GN = κ2/32πc and an emergent speed of light

c =
κ2

4

√

ǫ+ µq/2

1 − 3λ
=
κ2

4

√

√

√

√

∓
(

ǫ2 + ǫµ2

4 (β − 2ΛW )
)1/2

1 − 3λ
. (3.21)

We immediately see that the upper branch of solutions is ruled out, as the emergent speed

of light is imaginary. Even on the lower branch, as one approaches detailed balance c→ 0,

and so GN → ∞, which means the effective Planck length, lpl =
√

h̄GN/c3, diverges, as

expected due to strong coupling on all scales. Away from detailed balance, strong cou-

pling only kicks in below the emergent Planck length, and it is natural to ask if indeed

General Relativity can be recovered in the infra-red, as is perhaps suggested by the form

of equation (3.19). To establish this properly we must also look at the linearised Ni and

gij equations, and compare them with their GR counterparts. An entirely equivalent, but

more convenient approach, however, is to simply compute the effective action to quadratic

order in the fields propagating on the background. We shall do this presently.

Let us rewrite the action as the emergent GR piece, plus corrections

S = SGR + SUV + Sm, (3.22)

where

SGR =
1

16πGc

∫

dtd3x
√
gN

[

KijK
ij −K2 − c2(R− 3γ)

]

, (3.23)

SUV =

∫

dtd3x
√
gN

[

κ2

2
(1 − λ)K2 − κ2

8
E ijGijklEkl

]

. (3.24)

It is sufficient to compute SUV and Sm to quadratic order. The latter is given by

δ2Sm = −
∫

dtd3x
√
ḡ
[

nρ+ niv
i + hijτ

ij
]

. (3.25)

Because Kij and E ij vanish on the background, it is also straightforward to compute

δ2SUV =

∫

dtd3x
√
ḡN̄

[

κ2

2
(1 − λ)(δK)2 − κ2

8
δE ijḠijklδEkl

]

(3.26)
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where

δK =
1

2N̄

[

ḣ− 2∇ini

]

, δE ij =
1

w2
ǫkl(i∇kψ

j)
l − µ

2
ψij (3.27)

and

ψij =δ
(

Gij +
γ

2
gij
)

=−1

2
∇2(hij−hḡij)+∇(i∇kh

j)k− 1

2
∇i∇jh+ḡij∇k∇lh

kl+
γ

2
hij (3.28)

Assuming that λ flows to 1 in the infra-red, it would appear that

δ2SUV → −κ
2

8

∫

dtd3x
√
ḡN̄δE ijḠijklδEkl. (3.29)

This piece contains contributions that are higher order in the appropriate derivative op-

erators, and can be ignored at low energies, compared with δ2SGR. This would suggest

that provided we break detailed balance, we can indeed recover General Relativity at low

energies. However, such a naive analysis clearly does not tell the full story. Recall that

our original theory was invariant under a reduced set of diffeomorphisms. This means the

theory should contain more degrees of freedom than General Relativity. If our theory is

to recover GR in the infra-red, where did the extra degrees of freedom go? One faces a

similar scenario when studying Pauli-Fierz massive gravity theories [13]. A massive gravi-

ton has 5 propagating degrees of freedom whereas as a massless graviton has just two. As

we take the graviton mass to zero in Pauli Fierz theory, the extra 3 degrees of freedom do

not all disappear. In fact, it turns out that the longitudinal scalar mode becomes strongly

coupled [14], and is responsible for the famous vDVZ discontinuity [15].

The behaviour of the additional degrees of freedom in Pauli-Fierz gravity is most clearly

understood by artificially restoring the full gauge invariance using the Stuckelberg trick [14].

This was first introduced to study massive Abelian gauge theories, although we shall apply

it to the case in hand. To begin with, note that under the full set of diffeomorphisms present

in General Relativity, (t, xi) → (t− f(t, x), xi − ζi(t, x)), our ADM variables transform on

the background as follows

n → n+ ζk∇kN̄ + ḟ N̄ + f ˙̄N, (3.30)

ni → ni + ζ̇j ḡij − N̄2c2∂if , (3.31)

hij → hij + 2∇(iζj). (3.32)

We now introduce the Stuckelberg fields ξi(t, x), φ(t, x), whose scaling dimensions are the

same as x and t respectively. If we perform the following field redefinitions in the action

n → n+ ξk∇kN̄ + φ̇N̄ + φ ˙̄N, (3.33)

ni → ni + ξ̇j ḡij − N̄2c2∂iφ, (3.34)

hij → hij + 2∇(iξj), (3.35)

we find that

δ2S → δ2S +

∫

dtd3x
√
ḡN̄c2

[

κ2

2
(1 − λ)

(

2

N̄
∇i(N̄2∇iφ)δK +

c2

N̄2
(∇i(N̄2∇iφ))2

)

−φ
(

ρ̇

c2
+

∇i(N̄
2vi)

N̄

)]

, (3.36)
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where we have made use of the energy conservation laws (3.11) and (3.12). The action is

manifestly invariant under (3.30) to (3.32), along with the following shifts in the Stuckel-

berg fields

ξi → ξi − ζi, φ→ φ− f. (3.37)

The first Stuckelberg field ξi clearly plays no role. Not so the other Stuckelberg field, φ.

Its equation of motion is given by

κ2(1 − λ)∇i

[

N̄2∇i

(

δK +
c2

N̄
∇j(N̄2∇jφ)

)]

=
N̄ ρ̇

c2
+ ∇i(N̄

2vi) + non-linear corrections,

(3.38)

where we have included contributions from terms in the action beyond quadratic order.

Now as λ→ 1, we see that the Stuckelberg field becomes strongly coupled, in direct analogy

with the longitudinal scalar degree of freedom in Pauli Fierz gravity. The matter contri-

bution makes this manifest. Indeed, when matter is present, we can even see the strong

coupling of the scalar mode directly from the linearised equations of motion. To see this,

consider linearised perturbations that are scalars with respect to the 3D diffeomorphisms

on spatial slices,

δN = n, δNi = ∇iα, hij = σḡij + ∇i∇jθ (3.39)

It is convenient to make use of the remnant diffeomorphism (2.13) to gauge away θ. The

linearised Hamiltonian constraint (3.19) now yields

(

∇2 +
3

2
γ

)

σ =
8πGN

c
ρ (3.40)

where we have expressed everything in terms of the emergent speed of light (3.21) and

Newton constant, GN = κ2/32πc. Given the linearised form of the Ni equation (3.9),

∇jδπ
ij = 8πGN cv

i (3.41)

we make use of the solution (3.40) and the equation of motion (3.15) for N̄ , to show that

N̄(1 − λ)

(

∇2 +
3

2
γ

)

(3σ̇ + 2∇2α) =
16πGN

c

(

N̄ ρ̇+ c2∇i(N̄
2vi)

)

(3.42)

Now in General Relativity where one has the full set of 4D diffeomorphisms, the right

hand side of the above equation vanishes automatically by energy-conservation, ∇̂µT
µν =

0, and is therefore consistent with λ ≡ 1. However, in Hořava gravity, with a reduced

set of diffeomorphisms, the reduced version of energy-conservation (3.11) merely requires
∫

d3x
√
gN̄ ρ̇ = 0 on this background, and places no constraint on ∇i(N̄

2vi). Therefore, by

introducing, say, a non-zero value for ∇i(N̄
2vi), the scalar field equation (3.42) clearly runs

into problems with strong coupling as we approach the desired infra-red fixed point, λ→ 1.

Of course, it is important to note that strong coupling will even be present for

vacuum fluctuations. Naively one might expect that we can alleviate the problem by

simply absorbing (1 − λ) into the Stuckelberg field, defining φ̂ = φ(1 − λ). How-

ever, the non-linear corrections will generically include terms that schematically go like
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κ2(1 − λ)c2mc(∂t)
mt(∇)mx(hij)

mh(ni)
(5−4mc−3mt−mx+3mφ)/2(n)mn(φ)mφ . Upon replacing φ

with φ̂, such a term contains an overall factor of (1− λ)1−mφ , and will diverge for mφ ≥ 2.

Of course, this ought to be checked explicitly by introducing the Stuckelberg fields beyond

linear order, and computing the higher order action, but this is beyond the scope of the cur-

rent paper.

Note that unlike the previous case, the strong coupling associated with the Stuckelberg

field has nothing to do with detailed balance. It is merely an artifact of the reduced set of

diffeomorphisms present in the theory, and occurs even when detailed balance is broken.

As one approaches λ → 1, General Relativity is not recovered because the extra degrees

of freedom present in the full theory do not all decouple. On the contrary, one of those

degrees of freedom becomes strongly coupled, and one recovers General Relativity with an

additional strongly coupled scalar.

4 Discussion

By considering perturbations about the vacuum we have shown that Hořava gravity gener-

ically suffers from strong coupling problems on all scales, essentially ruling out the theory

as a viable model of the Universe. The strong coupling problems come in two different

guises. The first problem is related to the principle of detailed balance, and can be alle-

viated by adding terms to the action that explicitly break this principle. This radically

increases the number of parameters one can introduce into the model, and although this

would be undesirable from an aesthetic perspective, one could take the view that it would

be a small price to pay for a viable model of quantum gravity. Unfortunately breaking

detailed balance is not enough, since it does not save us from the second of our strong

coupling problems. This is related to the fact that Lorentz invariance is explicitly broken

in the UV and one is forced to give up the full set of diffeomorphisms present in General

Relativity. The result is that there are extra degrees of freedom that can still propagate

in the infra-red, one of which becomes strongly coupled on all scales as the parameters in

the theory approach their desired infra-red fixed point.

Whilst we have explicitly shown these effects for a particular model, we note that

they are generic to any model based on Hořava’s ideas. Consider first the strong coupling

problem associated with detailed balance. Whatever the choice of superpotential, W [g],

for detailed balance, the Hamiltonian constraint is given by

− 2

κ2
KijG

ijklKkl −
κ2

8
EijGijklE

kl = ρ. (4.1)

The vacuum solution (ρ = 0) is given by K̄ij = 0, and so Ēij = 0. Perturbations about the

vacuum now yield

− 4

κ2
K̄ijḠ

ijklδKkl −
κ2

4
ĒijḠijklδE

kl = ρ+ non-linear corrections. (4.2)

Clearly the left-hand side of the above equation vanishes automatically, which is precisely

the first strong coupling issue seen in section 3.
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We now turn our attention to the strong coupling associated with broken diffeomor-

phism invariance. This is present even without detailed balance, and regardless of how one

breaks it. To see this, note that for the theory to have any hope of recovering GR in the

infra-red, the quadratic action must take the form S = SGR+SUV+Sm, where SUV ≪ SGR

in the infra-red. Now given the form of the kinetic term in Hořava’s model,

SUV =

∫

dtd3x
√
ḡN̄

[

κ2

2
(1 − λ)(δK)2 + UV corrections coming from the potential

]

.

(4.3)

Assuming one breaks detailed balance such that the potential is still just a function of the

spatial metric and its spatial derivatives, then regardless of its precise form, one will find

that the UV corrections above will be invariant under hij → hij + 2∇(iζj), and as such

unaffected by the Stuckelberg fields. The only terms that result in explicit dependence on

those fields are Sm and the (δK)2 term above. Therefore the Stuckelberg analysis carried

out in the previous section can be extrapolated to apply to any breaking of detailed balance,

and one recovers the strong coupling problem as λ→ 1.

We should also comment on our choice of vacuum, since our results clearly depend on

this. We believe it is a natural choice since we require the conjugate momenta to vanish

on the spatial slices, along with spatial inhomogeneities. This choice admits maximally

symmetric spacetimes in 3 + 1 dimensions, which are the appropriate vacua in General

Relativity. Furthermore, this choice of vacuum, implementing a homogeneous and totally

geodesic foliation, is in accord with the Parametrised Post Newtonian (PPN) coordinate

system and its basic hypothesis of weak gravity and slowly moving sources. It also contains

the Minkowski inertial vacuum for γ = 0. Of course, one could always foliate a maximally

symmetric spacetime along surfaces with non-vanishing extrinsic curvature. It is difficult

to see how this would correspond to a better choice of vacuum since the conjugate momenta

no longer vanish and we move away from testable regions of GR. In any case, one could

always work on temporal scales much larger than the scale set by the extrinsic curvature and

reapply our analysis on those scales. This would presumably set the strong coupling scale to

be in the inverse of the extrinsic curvature scale. For example, using a cosmological slicing

of de Sitter space would result in strong coupling problems inside the cosmological horizon.

The strong coupling problems guarantee that perturbative General Relativity cannot

be reproduced in the infra-red in Hořava gravity. This would seem to disagree with the

results of [7] that recover the Schwarzschild solution when one breaks detailed balance.

However, there is no disagreement. The symmetries imposed on the solutions in [7] prevent

the strongly coupled scalar mode from being excited. Therefore, evidence of this mode

may well be absent in classical local tests of general relativity that implement weak and

slowly moving sources. Generically, however, the troublesome scalar will be excited. If, for

example, we allowed for time dependence, while keeping spherical symmetry, one would

expect this scalar mode to kick in and be responsible for a breaking of Birkhoff’s theorem.

Indeed the presence of a strong coupled scalar mode in the gravity spectrum casts serious

doubts on the validity of this theorem and signals the probable presence of gravitational

radiation from spherical sources. Furthermore, the linearised version of General Relativity

is used to study the effects of gravitational radiation emitted by binary pulsars, and contains
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excellent agreement with observation [23]. In Hořava gravity we have seen that we have no

reliable linearised theory to work with due to strong coupling of an extra scalar degree of

freedom. Even if it were tractable, it seems unlikely that a non-linear analysis could recover

the successes of General Relativity in this instance, since the gravitons will generically

couple to the strongly coupled mode through higher order interactions. Our conclusion

then is that Hořava gravity in its current form is almost certainly ruled out.

Note added. Since this paper first appeared there have been a number of publications

that discuss the issues we have raised, most notably [24–26]. In particular, Mukohyama

pointed out that strong coupling from diffeomorphism breaking does not occur in the

”projectable” version of Hořava gravity [24], in which the Hamiltonian constraint is non-

local. In this paper, we have chosen to restrict attention to the non-projectable theory,

since General Relativity is an entirely local theory. It is clear that this version of the theory

is ruled out for the reasons outlined in this paper, and elaborated on in [25]. However, we

do acknowledge that the projectable version of Hořava gravity is more subtle. Clearly, the

non-local Hamiltonian constraint will admit many more solutions in the infra-red than GR,

and it was suggested in [24] that this manifested itself through an ”integration constant”

that could mimic dark matter. Blas et al. [25], in addition to reinforcing the results of

our work, also highlighted some problems faced by the non-local theory. In particular

they pointed out that if the integration constant is to model dark matter, then there is

a strong coupling scale of around a millimeter. Furthermore, since this ”dark matter” is

pressureless and built from the Stuckelberg scalar, it will lead to unacceptable formation

of caustics. One can argue, as Mukohyama has [26], that the caustic formation might be

avoided when the parameter ”λ” deviates from its infra-red fixed point (λ = 1) in the

ultraviolet. Whilst he showed that this was indeed the case in a particularly simple, highly

symmetric example, it is fair to say that it has not been proven in all generality. The

issue of strong coupling at a millimeter also remains an issue for the projectable theory. In

summary, the non-projectable version of Hořava gravity has essentially been ruled out by

this paper and [25], whereas the projectable version faces issues with strong coupling and

caustic formation that have yet to be fully understood [25, 26].
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